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RESEARCH MEMORANDUM

AN EXPERIMENTAL STUDY AT HIGH SUBSONIC SPEEDS OF
SEVERAL TAIL CONFIGURATIONS ON A MODEL
WITH AN UNSWEPT WING
By William C. Sleeman, Jr.

SUMMARY

An investigation has been conducted in the Langley high-speed 7- by
10-foot tunnel of the static longitudinal and lateral stability charac-
teristics of a model having an unswept wing and several different tail
arrangements. A systematic series of Y-tails was tested in which the
height of the vertical stub supporting a 40O V-tail was varied and in
which the dihedral angle was varied tl10° at an intermediate stub height.
In addition to these tails, a cruciform tail having both X- and
+-orientations was tested, and a more conventional T-tail was investi-
gated as a basis for comparison. All of the tails were unswept and of
rectangular plan form. The wing used in this investigation had an
unsvept half-~-chord line and was of aspect ratio 3 and taper ratio 0.5.
The test Mach number range extended from 0.60 to 0.9% and the angle of
attack extended to 22° at the lowest test Mach number.

The overall results for the series of Y-tails were generally
influenced by dihedral and vertical stub span in a manner to be expected
from the geometrical differences in the tails. Rather large effects of
orientation of the cruciform tall were indicated for both longitudinal
and directional stability. Although none of the configurations tested
provided ideal tail contributions to stability, some directional stabil-
ity advantages of Y-tails at high angles of attack were indicated.

A tail-interference effect on directional stability of the T-tail
configuration was indicated by the loss of end-plate effect of the hori-
zontal tail at low angles of attack and high Mach numbers. In addition
to the loss of end-plate effect, a large adverse effect of negative
stabilizer incidence on directional stability near 0° angle of attack
wvas found for both the T-tall and V-tail at the higher Mach numbers.
Flight difficulty from this source would be unlikely, except possibly
during some transient maneuvers for vhich the airplane may be momen-
tarily out of trim.
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INTRODUCTION
v
Flight experience and wind-tunnel tests for a number of current
alrplane configurations have indicated the existence of various stability . .
difficulties, and work on alleviating these problems has, for a large »

part, been directed toward achieving modifications to an existing basic
arrangement which would eliminate or delay the onset of these difficulties.
The present experimental study, while not concerned with a specific prob-
lem, was undertaken to explore the possibilities of avoiding some of the
stability problems by use of tail arrangements other than those currently
considered conventional. The possibility appears, that a V-tail (refs. 1
and 2) or a modified V-tail could improve the directional stability char-
acteristics of airplanes at high angles of attack by location of the ver-
tical stabilizing surfaces away from the fuselage. Supporting a V-tail
on a vertical stub, thus forming a Y-tail would appear to be a means for
obtaining additional directional stability and eliminating the need for
the V-tail controls to provide directional as well as longitudinal con-
trol by placing the rudder in the vertical stub.

Static longitudinal and lateral atability characteristics were
determined on a model having a number of tall configurations for Mach
numbers from 0.60 to 0.94 and for an angle-of-attack range up to 22° at
the lowest test Mach number. The wing used in the present tests was of *
aspect ratio 3, taper ratio 0.5, and had an unswept half-chord line; all
of the tails had rectangular unswept plan forms. The test results were .
for a series of Y-tails in which the height of the vertical stub was '
varied down to that for a V-tail. The effect of dihedral angle was
studied for the Y-tail at an intermediate stub height. Results were also
obtained with a +-tail, an X-tail, and a more conventional T-tail, as well
as tail off. Inasmuch as this experimental study was exploratory rather
than specific, some of the configurations tested may not be considered
practical from the standpoint of direct design application.

SYMBOLS

The results of this investigation are referred to the stability
system of axes vhich is shown in figure 1 together with an indication of
positive directions of forces, moments, and displacements of the model.
Mament coefficients are given about the reference center shown in fig-
ure 2 (located on the fuselage center line at a longitudinal position
corresponding to the 25-percent wing mean serodynamic chord).

Cy, 11ft coefficient, %E‘
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Cp drag coefficient, Eraés-

Cn pitching-moment coefficient, P"“’h"i‘gﬁm“t

c, rolling-mament coefficient, Rolnnﬁs:omnt

Cn yawing-moment coefficient, Y“dﬂi s’,:mf’t

Cy lateral-force coefficient, Iﬁ&&%‘.slm

q dynamic pressure, Ezf, 1b/sq It

v velocity, ft/sec

p air density, slugs/cu ft

M Mach number

S wing area, sq ft

b wving span, ft

é wing mean acrodynamic chord, ft

.3 angle of attack of fuselage center line, deg

B angle of sideslip, deg

r dihedral angle of tail, deg

i, stabilizer incidence measured in plane of symmetry, deg

Subscripts:

B partial derivative of aE coefficient with respect to sideslip,
for example czB = 551

t denotes increment due to addition of tall surfaces
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MODEL DESCRIPTION

The wing-fuselage arrangement used in this investigation for all of
the tail configurations is shown in figure 2. Details of the fuselage
geometry can be found in reference 3. The steel wing of the model had
an aspect ratio of 3, taper ratio 0.5, and unswept half-chord line (6.34°
of quarter-chord sweep) and had NACA 65A004 airfoil sections parallel to
the free-stream direction.

Tail 1 is shown on the model in figure 2 and indicates the longi-
tudinal location of all the other tails. A sketch showing a rear view
of the test talls on the fuselage is given as figure 3. All of the tails
had a chord of 1.80 inches and NACA 65A006 airfoil sections. The tails
were constructed of steel and were soldered to interchangeable fuselage
blocks as shown in figure 4.

In the present study of unconventional tail arrangements, a T-tail
configuration (tail 1 shown in figs. 2 and 3) was selected to represent
a basic arrangement for comparative purposes. The geametry of tail 2
was selected to obtain a comparison of longitudinal stability character-
istics of a T-tall and a Y-tail occupying roughly the same region inas-
much as the midpanel spans of these two tails coincided. The possibility
was apparent that the losses in directional stability at high angles of
attack encountered on many conventional tail arrangements could be alle-
viated by use of a Y-tail for which the stabilizing surfaces were located
avay from the fuselage. It was also expected that tail 2 could provide
some longitudinal stability benefits over tail 1 in that an abrupt pitch-
up tendency possible with the T-tail might be softened considerably or
even eliminated. The favorable effect of the Y-tail on longitudinal
characteristics would be expected first from the consideration that the
tall vith dihedral would enter the wing wake or regions of high downwash
more gradually than a horizontal tail, and, secondly, the downwash effects
on longitudinal stability would be decreased by the favorable sidewash
effect on the V-tail portion as discussed in reference 2.

The dihedral angle of 40° used with tail 2 was considered the basic
angle and the vertical studb span of tail 2 was reduced to give tail 3.
This tail was selected, on the basis of estimated characteristics, as an
arrangement giving a more reasonable combination of longitudinal and
directional stability contribution. The dihedral angle for tail 3 vas
varied t10° to obtain tail 4 and tail % in order to assess effects of
this variable for a Y-tail having a moderate stub span. It is evident
in figure 3 that the tail panel area increased with increasing dihedral
angle inagsmuch as the horizontal span of the tails wvas held constant.
Further information on .effects of stub span at the basic dihedral angle
were obtained by reducing the stub to slightly less than the fuselage
radius to obtain tail 6, the V-tail.
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In addition to the series of Y-tails, an X-tail (tail 7) and a
+=-tail (tail 8) were tested. These two tails were of identical geometry
and location with the exception of their orientation about the body cen-
ter line. The size of these tails was selected to give close to the same
directional stability contribution as the basic T-tail.

TESTS AND RESULTS
Test Conditions

Tests were conducted in the Langley high-speed 7- by 10-foot tunnel
for a Mach number range from 0.60 to 0.94% and an angle-of-attack range
from -2° to 22° at the lowest test Mach number. All the configurations
vere tested at sideslip angles of O° and t4° through the angle-of-attack
range on the sting support shown in figure 5. The T-tail and X-tail con-
figurations were also tested through a sideslip-angle range of -4° to 12°
at a lowv and high angle of attack. Failure of a solder joint and conse-
quent destruction of the T-tall prevented completion of all of the side-
slip tests with this tail. :

The average test Reynolds number based on the wing mean aerodynamic

chord varied from spproximately 1.00 x 106 to 1.25 x 10 for the lovest
and highest test Mach numbers, respectively.

Corrections

No Jet-boundary or blockage corrections have been applied to the
data inasmuch as the model size was very small relative to the size of
the tunnel test section. Corrections to the angles of attack and side-
slip angles due to deflection of the strain-gage balance and support
system under load have been applied. Corrections to the drag coeffi-
cients have been applied such that the base-pressure conditions corre-
spond to free-sgtream static pressure.

Soms remarks concerning the accuracy of the drag results of this
investigation are wvarranted because the minimm drag coefficients 4id
not alvays appear reasonable. The accuracy level of the drag coeffi-
cients is believed to be low because the balance chord-force gages vere
not sensitive enough to measure accurately the minimm drag values on
the present model and the maximum values of chord force measured vere
only about 10 percent of the design balance capacity. Drag results are
presented, therefore, only for the tail-off configuration to provide an
indication of the drag due to 1lift. The accuracy of the lateral-force
derivatives also is samevhat lov inasmuch as the maximm value of lat-
eral force attained in the tests was only about 15 percent of the design
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loading capacity for this component. The experimental yawing moments on
the model were closer to the design loading condition for the strain-gage
balance and the yawing-moment derivative would therefore be expscted to v
be a more accurate indication of tall effects on lateral characteristics

than the lateral-force derivative CYB' .

Presentation of Results

The basic aerodynamic characteristics for the wing-body configura-
tion and for its combination with the various tail configurations are
presented in figures 6 to 15. Aerodynamic characteristics through the
sideslip range for the T-tail and X-tall are included in figures 8 and 15.
Lateral stability derivatives obtained fram tests at t4° sideslip for the
various model configurations are presented in figures 16 to 20 and
include effects of stabilizer incidence for the T-tail and V-tail. Some
of the pertinent tail.configuration effects are summarized in figures 21
to 24 and a comparison of lateral derivatives with respect to the body
axes and stability axes is given in figure 25.

DISCUSSION

Wing-Body Characteristics o

Test results for the complete model exhibit some significant sta- ,
bility effects which are for the most part attributable to the wing-body
behavior rather than to the tail contribution. These wing-body effects,
of course, must be considered for a more general evaluation of the tail
configurations studied.

The tail-off pitching-mament characteristics presented in figure 6
indicate a large rearvard shift in aerodynamic-center location in going
from low to moderately high values of 1lift coefficient. In the higher
1ift-coefficient range (above approximately 15° angle of attack), a large
reduction in stability occurred. These pitching-moment characteristics
generally persist in all of the tail-on test data and therefore the large
longitudinal stadility changes over the angle-of-attack range shown in
the complete-model results may be attributed to a large extent to the
basic tail-off characteristics.

Directional stability results for the wing-body configuration
(£4g. 17) also exhibit characteristics worthy of attention at angles of
attack above 159, TYor angles of attack below about 109, the unstadle
mcments of the ving-body configuration veried only slightly with
increasing angle of attack. At higher angles, however, the wving-body
configuration becams directionally stable. This occurrence of positive
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directional stability at high angles of attack has been encountered
experimentally on other wing-body configurations and appears to be due
to the ntn:il:lzing contribution of the unswept wing as indicated in
reference 4,

In view of the aforementioned wing-body characteristics, which
would tend to make the complete-model results less directly indicative
of tail characteristics, the tail contributions to pitching moments and
lateral stability derivatives are summariszed in ﬂc\mﬂ 21 and 22 for
Mach numbers of 0.60 and 0.94.

Effects of Stabilizer Incidence on
Lateral Characteristics

The importance of selecting a proper stabilizer incidence with
regard to the longitudinal characteristics was recognized in the design
of the test tail comfigurations. In order to reduce the chance of
interpreting positive tail stall as pitch-up, and to have the model in
longitudinal trim at a moderately high angle of attack, the tails (with
thc-g%coption of tails 7 and 8) were constructed with a fixed setting
ot *

The use of a moderate negative stabilizer setting afforded some
definite advantages in interpreting pitching-moment data in the higher
1ift range; however, some unexpected lateral stability characteristics
were encountered at Mach number of 0.80 and above, at low lift where
the model was not in longitudinal trim. The lateral stability deriva-
tives presented in figures 16 and 17 show a large loss in directional
stability for the -6° stabilizer setting at lov angles of attack as the
Mach number increased from 0.60 and in same cases the occurrence of
directional instability at O° angle of attack was indicated for both
the T-tail (fig. 16& and the V-tail (fig. 17). This large directional
stability loss at O angle of attack of course appeared unusual and both
the T-tail and V-tail were modified to obtain a neutral setting wvhich
would be more appropriate from the standpoint of longitudinal trim at
low 1ift than the -6° setting. Lateral stability characteristics with
the neutral stabilizer setting are also given in figures 16 and 17 and
shov no outstanding effects of stabilizer setting through the angle-of-
attack range for the lowest Mach number (M = 0.60). For the higher Mach
mumbers and at low angles of attack, the directional stability of the
model vith the neutral stabilizer was much higher and appeared more
reasonable than that obtained with the -6° setting. Directionmal sta- .
'vility characteristics for sngles of attack above approximately 10° were
not sppreciably affected by stabilizer setting with the exception of the
T-tail at M = 0.9% (fig. 16). It might be of interest to observe that
with both the T-tail and V-tail at high Mach mmbers, the increment of
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(:np in going from O° to 6° angle of attack for the negative stabilizer

setting vas approximately the same as the increment in going from s sta-
bilizer setting of -6° to 0° at a = 0°. This would appear to indicate
that the losses in C“B at low angles of attack were associated pri-

marily with the horizontal-tall angle of attack.

The adverse effect of negative stabilizer setting on directional
stability shown in figures 16 and 17 1s believed to be due to flow break-
down resulting from shock formation. These Mach number effects on the
vertical tail in the presence of the horizontal tail will be discussed
more fully in the following section on T-tail characteristics. The
adverse effects of negative stabilizer setting for the V-tail are believed
to be due to the adverse Juncture at the acute angle formed by the tail
and the converging fuselage afterbody.

Test results for the Y-tails (figs. 18 and 19) which had -6° inci-
dence showed directional characteristics at low angles of attack and
high Mach mmbers similar to those of the T-tail. Although data were
not obtained with a neutral setting for the Y-tails, it is believed that
the effects of stabllizer setting shown for the T-tail may be indicative
of effects to be expected for the Y-tails. Inasmuch as the lateral sta-
bility derivatives for all the tails with -6° incidence probably were
affected by incidence at the higher test Mach numbers, subsequent com-
parison of estimates with experimental results will be confined to the
lowest test Mach number. The tail contribution to both longitudinal and
lateral characteristics is presented, however, for the lowest and highest
test Mach numbers in order to illustrate the Mach number interference
effect.

T-Tail Characteristics

Pitching-moment characteristics for the complete model with the
T-tail given in figure 7 indicate the abrupt pitch-up tendency with the
neutrsl stabilizer setting was delayed to a slightly higher angle of
attack vhen the negative setting was used. This may have been due to
either the onset of tail stalling for the neutral setting or a decrease
in stabilizer effectiveness resulting from the tail entering the wvake
at high angles of attack. The contribution of the T-tail to pitching
moments is compared with the other tails in figure 21 for the lowest and
highest test Mach numbers (0.60 and 0.94).

Aerodynamic characteristics over a range of sideslip angle from -4°
"to 12° are presented in fi 8 for the T-tail configuration at nominal
angles of attack of 0°, 10°, and 15°. These test results were obtained
with the stabilizer set at -6° incidence and show the occurrence of
directional instability at M = 0.90 which was indicated in the deriva-
tives of figure 16 for a range of sideslip angle of t4C®. The directional
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stability of the model with the T-tail was generally less at sideslip

angles approaching the maximum test angles than at moderate sideslip

angles. Pitching-moment characteristics with the T-tail for a = 0°

presented in figure 8 shows the fairly large variation in pitching moment

vith increasing sideslip expected for a T-tail configuration (ref. 5);

_.howeveér, the pitching-moment variation was much less at the highest angle
of attack than at 0° angle of attack.

Lateral stability derivatives for the T-tail configuration are pre-
sented in figure 16 and the tail contribution at Mach numbers of 0.60 and
0.94 is given in figure 22. The results of figure 22 show that the
vertical-tail contribution to Cnp vas increased about 30 percent at

0.60 Mach number by addition of the horizontal tail for angles of attack up
to approximately 12°. Above this angle of attack, the effect of the hori-
zontal tail decreased to the vanishing point at a = 220. At the highest
test Mach number, the end-plate effect of the horizontal tail at O° angle
of attack was unfavorable even with an incidence of 0° (fig. 22(b)).

This loss of end-plate effect can be seen from the basic data of fig-

ure 16 to increase progressively with Mach number above M = 0.80. Rea-
sons for this unfavorable effect of the horizontal tail at the higher
Mach numbers have not been definitely established; however, it is believed
to be due to the same type of interference as that encountered previously
for the effects of stabilizer setting. A possible explanation of this
horizontal-tail interference encountered at O° angle of attack and stabi-
lizer setting may be the simple addition of velocities due to thickness

of the intersecting airfoils causing shock formation and flow breakdown.
Of course, the effects of a down load on the horizontal tail would add

to the thickness effects to cause the interference to increase with nega-
tive increments in either model angle of attack or stabilizer incidence.
There is evidence that this flow breakdown at O° angle of attack and sta-
bilizer incidence can be alleviated by stagger of the horizontal and ver-
tical surfaces or by incorporation of sweepback in the tail surfaces.

The possibility exists that the fuselage afterbody shape contributed to
the flow breakdown; therefore modifications to the afterbody might also
be expected to improve the tail contribution.

A rather unusual aspect of the end-plate effect was noted for the
T-tail at the higher test Mach numbers, and for discussion of these
results reference is made to the basic stability derivatives presented in
figure 16. Attention is called to the variation of directional stability
with angle of attack at the different Mach numbers for the neutral sta-
bilizer setting. These results show a large increase in the variation
of cna with angle of attack as the Mach mumber increased; however, the

~ peak value of Cng (occurring slightly below 10° for Mach numbers from

0.80 to 0.94) remained approximately the same, vhereas the values of C“B
at lov angles of attack decreased appreciably with Mach number. The data
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also indicate that further decreases in directional stability would be
expected for increasing negative angles of attack. This large variation
in directional stability with angle of attack, characterized by signifi-
cant losses at low angles of attack, is believed to be further manifes-
tation of the horizontal-tail interference discussed in relation to end-
plate effects and stabilizer incidence. Additional test results relative
to this problem were obtained (unpublished data for a model three times

the size of the present model) which substantiated the interference effects
encountered in the present study. These data were obtained on a model
having a delta-plan-form horizontal tail mounted at the tip of a swept
vertical tail and results were obtained for a fairly large negative as

vell as positive angle-of-attack range. These results were in agreement
with the trends in the variation of directional stability with angle of
attack at negative angles shown for the present test results. These data
indicate furthermore the desirability of exploring directional stability
characteristics in the negative as well as positive angle-of-attack range
in wvind-tunnel studies inasmuch as large negative angles have been reached
inadvertently on a number of current high-speed airplanes which experienced
large lateral-longitudinal coupled motions (for example, ref. 6).

Y-Tail Characteristics

The longitudinal and particularly the directional stability charac-
teristics of the model were generally affected by dihedrsl and tail
height in a manner to be expected from the obvious geometrical differ-
ences in the tails (figs. 21 and 22). The pitching-moment contribution
of the Y-tails was not appreciably different from that of the T-tail at
M = 0.60 (fig. 21(a)) and all of the Y-tails as well as the T-tail showed
a pitch-up tendency of the tail contribution in the angle-of-attack range
from 18° to 20°. Pitching-moment contributions of the Y-tails at M = 0.94
were more favorable than for the T-tail in that the destabilizing break
shovn for the T-tail (fig. 21(b); iy = -6°) above a = 2° was greatly

reduced with tail 2 and tail 4. Somewhat smaller stabilizing gains in
tail contribution were realized with tail 3 and tail 5 which had lower
effective tail heights.

Very large differences in directional stability, of course, accom-
panied changes in dihedral and stub span (fig. 22) and appreciable changes
in the tail contribution with angle of attack occurred for the ¥-tails.
The large differences in tail contribution shown in figure 23(a) at
0° angle of attack for the different configurations is due, for the most
part, to differences in tail area rather than to tail location. The
results of figure 22(a) have therefore been normalized at 0° angle of
attack to indicate more clearly the comparative effects of tall configu-
ration throughout the angle-of-attack range. These results are presented
in figure 23 as a ratio of the tail contribution to CnB divided by the
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value of the tail contribution at O° angle of attack. The directional
stability contribution at the highest test angle of attack (fig. 23) was
greater than 50 percent of the value at O° angle of attack for the Y- and
V-tails (excepting tail 2), whereas the stability contribution for the T-,
X-, and +-tails was less than half of the stability at 0°. The Y-tails,
furthermore, generally showed much less stability decrease with angle cf
attack above aq = 20° than the T-tail, X-tail or +-tail.

+- and X-Tails

The +-tail and X-tail were of identical geometry with the exception
of their orientation on the body center line and the effects of orienta-
tion were found to be quite large on both the longitudinal and lateral
characteristics. Pitching-moment results, for example (figs. 14 and 21),
indicate that considerably less low-1ift stability was obtained with the
+=-tall than with the X-tail and at the highest test Mach number the
presence of the +-tall was actually destabilizing near zero 1lift
(fig. 21(b)). In the high angle-of-attack range at the lower test Mach
numbers (fig. 21(a)), however, somewhat more stability was obtained with
the +-tail than with the X-tail, and both of these tails had more favor-
able pitching-moment characteristics than either the Y-tails or T-tails
at high angles of attack.

Directional stability characteristics at the two lowest test Mach
numbers with the X-tail and +-tail (fig. 20) were approximately the same
for angles of attack up to about 15°, Above 15° the overall stability
with the X-tail deteriorated rapidly with increasing angle of attack
(£ig. 20) and the contribution of the X-tail was destabilizing at angles
of attack above 21° and 24° for M = 0.60 and 0.80, respectively (figs. 17
and 20). Directional stability of the complete model with the +-tail was
almost invariant with angle of attack (fig. 20) at the lowest Mach number
tested; however, the tail contribution shown in figure 22 for both the
X-tail and +-tail decreased appreciably at high angles of attack at
M = 0.60. No large differences in directional stability for the +- and
X-tail were evident at the highest test Mach numbers (fig. 22(b)) where
the angle-of-attack range was limited.

The variation of tail contribution to directional stability with
angle of attack for the X-tail and +-tail at the lowest test Mach number
(figs. 22(a) and 23) showed the same general trends and values as the .
T-tail. At Mach number 0.94, the contribution of the X-tail and +-tails
was almost invariant with angle of attack at low angles; whereas the
T-tailoshowed the aforementioned large variation with angle of attack
near 0©.
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Estimated Tail Contribution

Estimates of the tail contribution to stability have been made only
for the lateral stability derivatives inasmuch as the degree to which
these derivatives were affected by tall configuration was much greater -
than for the longitudinal stability. Experimental and estimated results ‘
showing the variation of tail contribution to lateral derivatives with
dihedral and stub height are. presented in figure 2. The results of
figure 24 were confined to the lowest test Mach number and 0° angle of
attack because of the aforementioned effects of Mach number and stabi-
lizer setting.

Estimates of the V-tail contribution to the lateral derivatives were
obtained by using the relationships of V-tail theory glven in reference 1
and using values of lift slopes obtained from the relationships given in
appendix A of reference 7. In the estimation of the contribution of the
tail to yawing maments and rolling moments, the resultant force on the
V-portion of the tail was assumed to act at the quarter chord and mid-
span for each panel. The contribution of the vertical stub was estimated
from the theoretical approach of reference 8 and the end-plate effect of
the V-portion on the stub of the Y-tail was obtained from the theory given
in reference 8 for a horizontal tail located at the tip of a vertical tail.

Estimates of the contribution of the V-taill presented on the right-
hand side of figure 24 are in fairly good agreement with experiment and,
likewise, the estimated variation of ant with dihedral angle shown on

the left-hand side of figure 24 is in good agreement with the experimental
variation. These comparisons indicate that simple V-tail theory would be
expected to afford reliable means for estimating the V-tail contribution
for the range of tails used in this investigation. The estimated contri-
bution of the Y-tails, however, shows an increasing discrepancy with
experiment with increasing stub height. The discrepancy between estimates
and experiment could be because of either the underestimation of end-plate
effects of the fuselasge and V-portion of the tail or to inaccuracies in
the estimated sidewash effects. Inasmuch as sidewash effects would be
expected to be minimized for the condition at 0° angle of attack selected,
it would appear that mutual interference effects of the fuselage, stub

and V-portion of the tail were probably underestimated. Possible effects
not accounted for in the estimates are the end-plate effect of the fuse-
lage on the V-tail and the loading induced on the fuselage by the V-tail;
however, these effects would probably diminish with increasing stub height.
Also, it would be expected that in sideslip, the stub would induce addi-
tional loading on the V-portion of the tail and likewise the V-portion
would induce a loading on the stub in addition to the type of end-plate
effect contributed by a horizontal tail. The extent to which these effects
for the Y-tails caused the experimental results to differ from the estimates
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is not known; however, estimates of the angularity induced on the stub

by the V-portion in sideslip indicated that this effect was probably
quite small.

Characteristics Referred to Body-Axis System

The lateral stability derivatives CZB and C are presented in

n
B
figure 25 for all of the tail configurations to indicate the differences
in these derivatives when referred to the body-axis system instead of the
stability-axis system. The camparison presented in figure 25 shows that
the directional stability derivatives for all configurations was appre-
ciably reduced in going from the stability-axis system to the body axis
as the angle of attack was increased from 0°. The effective dihedral
parameter ClB was increased when referred to the body-axis system for

the tail-on configurations.
CONCLUSIONS

An experimental investigatidn at high subsonic speeds of several
unsvept-tail arrangements on a model having a low-aspect-ratio unswept
wing indicated the following conclusions:

1. Although an optimum arrangement having a constant tail contri-
bution to stability throughout the angle-of-attack range was not closely
approached in the present study, some directional stability advantages of
Y-tails at high angles of attack were indicated without any outstanding
stability disadvantages being evident compared to the T-tail.

2. Pitching-moment characteristics of the T-tail and the series of
Y-tails tested were not greatly different, and the directional stability
characteristics with the Y-tails were generally affected by dihedral and
vertical stub span in a manner to be expected from the geametrical dif-
ferences in the tails.

3. Rather large effects of orientation of a cruciform tail were indi-
cated on both longitudinal and directional stability. The contribution to
longitudinal stability for the cruciform tail oriented as an X-tail was
greater than the +-tail arrangement in the low lift range. Directional
stability characteristics with the X-tail were markedly inferior to the
+-tail at high angles of attack for Mach numbers of 0.60 and 0.80.

4. A large tail-interference effect on directional stability of the
T-tail configuration was indicated by the loss of end-plate effect of the
horizontal tail at low angles of attack and high Mach numbers. This
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interference effect at high speeds was also characterized by a large
variation of directional stability with angle of attack, accompanied by
significant stability losses in the low angle-of-attack range.

5. A large effect of stabilizer incidence on the directional sta-
bility at low angles of attack was found at high Mach numbers for the
T-tail and V-tail. The directional stability for these conditions
decreased from a reasonably high positive value to a negative value in
going from O° to -6° stabilizer incidence. This adverse effect of nega-
tive stabilizer incidence would be important for an out-of-trim condi-
tion such as may occur in some transient maneuvers. At angles of attack
above 6° there was little consistent eﬁ‘ect of stabilizer setting on
directional stability.

6. Estimates of the V-tail contribution to directional character-
istics using available V-tail theory were in good agreement with experi-
mental results at the lowest test Mach number for the V-tail and the
Y-tails. Estimates of the vertical-stub contribution for the Y-tails
were lower than experiment at a Mach number of 0.60 particularly for the
greatest stub span tested.

Iangley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., December 23, 1955.
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Figure 9.- Aerodynamic characteristics in pitch of the model with tail 2.
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Flgure 10.- Aerodynamic characteristics in pitch of the model with taill 3.
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Figure 11.- Aerodynamic characteristics in pitch of the model with tail 4.
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Figure 13.- Aerodynamic characteristics in pitch of the model with tail 6.
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Figure 25.- Concluded.
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